Application of Motion Analysis Technology to Olympic Sports

Dr. Phil Cheetham
Senior Sport Technologist and Biomechanist
US Olympic Training Center, Chula Vista CA
Chula Vista Training Center
Definitions
Motion Analysis

• The science of analyzing human movement using the principles of physics
 – Clinical Motion
 – Sports Motion

• Steps
 – Capture the motion with video or sensors
 – Compute physical parameters
 – Analyze using statistics
 – Compare the motion to the best in the world

• Principle tool used in Biomechanics
Biomechanics

• The study of human motion using the principles of physics, engineering, anatomy and physiology

• In sports we use biomechanics to provide rational to why we teach specific techniques

• Two goals of biomechanics
 – Rapidly Improve Performance
 – Reduce Injury Risk
Motion Analysis
Methods

A history of ways to capture and analyze human motion from my experience
• Electrical Engineering Degree, UNSW, Sydney, Australia

• Olympian in Gymnastics
 – 1976 Montreal
 – Came to Arizona State University to prepare for 1980 Olympics
• Master of Science Degree
• Physical Education, Biomechanics
• ASU, Tempe, Arizona
 – Developed 2D Film Analysis System for Thesis
 – Analysis of the Handspring Front Flip on Vault
Manual Digitizing from Film

- Locam 16mm Film Camera
- 16mm Projector
- Graphics Digitizing Tablet
- Digitize Joint Centers
 - Frame by Frame
 - Crosshair Cursor
 - Very Laborious
- Tektronics 4052 Computer
 - Wrote my own software
• Research Engineer,
Sports Science Program
Olympic Training Center, Colorado Springs
 – Co-Developed 2D Optical Motion Analysis System
• Started a Company called
Peak Performance Technologies
3D Manual Digitizing from Video

• Peak Performance Technologies Inc.
• Multiple Camera Views
• Calibration Frame
• Digitize Body Points in Sequential Images
 – Crosshair Cursor on Joint Centers
• Advantages
 – No need to bother the athlete
 – Only way to get data in a competition
• Disadvantages
 – Tedious and time consuming
 – Impractical for immediate feedback
 – Digitizing Error
• Used this at Barcelona Olympics 1992
 – IOC Project
 – Gymnastics, Diving, Track and Field
• Still use this Method Today
 – High Jump, Discuss, Hammer
Optical

• Reflective Markers
• Video or Infrared Cameras
• Automatic Tracking
 – Markers automatically tracked
 – Lots of cameras (8 – 24 or more)

• Advantages
 – Markers are light
 – No Wires
 – High Sample Rates (500Hz)
 – Can now do real-time display

• Disadvantages
 – Can’t be used in Sunlight
 – Maybe time consuming
 – Expensive
 – Complex
Optical Systems

- Qualisys
- Motion Analysis Corp.
- STT
- Vicon
- Natural Point
- Motion Reality
Electromagnetic

• Transmitter and Sensors
 – 4 to 12 Sensor Typical

• Advantages
 – Small Sensors
 – Fast 240 Hz
 – Real-Time
 – 6 Degrees of Freedom
 – Accurate Anatomical Alignment
 – Full Body Capture

• Disadvantages
 – Wired
 – Metal Sensitive (but works on any club)
Anatomical Alignment

• Align Markers Directly to Body
 – Use Digitizing Pen on Body Points
 • Used by AMM 3D-Golf
 – Use Static Markers on Body Points
 • Typically for Optical Systems
• Get “True” Body Angles and Positions
• More accurate but more time consuming
Wireless Electromagnetic – G4

Self Contained and Battery Operated

Quick to Set Up and Teatherless
Inertial Systems – K-Vest

• **3DOF**
 – Bend
 – Side Bend
 – Turn

• Inertial Hardware
 – 3DOF
 – Portable
 – Each Sensor is Wireless

![Image of K-Vest in action](image-url)
Intertial Systems - Noitom
Inertial - Xsens
Many Inertial Companies

- Zepp
- Blast Motion
- YEI
- APDM
Markerless Tracking
Markerless Systems – Swing Guru
Markerless Systems - Organic Motion

Markerless System – No Markers Needed
Markerless Systems – Microsoft Kinect
Examples in Golf
AMM and TPI

AMM 3D Motion Measurement

• 12 Sensor, 6DOF, Full Body
• Upper Body
 – Head
 – Thorax (Ribcage)
 – Arms and Hands
 • Shoulders, Elbows, Wrists
 – Club
• Lower Body
 – Pelvis
 – Legs and Feet
 • Hips, Knees, Ankles
 • Feet - Stance

TPI Biomechanics and Database

• TPI 3D Advanced Layout
• Pro Databases
 – PGA
 – LPGA
 – Long Drive
 – Amateur
• Comparative Reports
 – Over 400 values
• Comparison Table
 – Nearly 200 Graphs
AMM3D Electromagnetic
View 3D Image from Any Direction
Multiple Mode for Club Plane View
Screen Layouts with Synchronized Graphs
Comparison Table and Database

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Addr</th>
<th>HB</th>
<th>Top</th>
<th>HD</th>
<th>Imp</th>
<th>HF</th>
<th>Fin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvis Rotation (Open-Closed)</td>
<td>deg</td>
<td>2.5</td>
<td>17.5</td>
<td>55.8</td>
<td>30.4</td>
<td>41.4</td>
<td>50.6</td>
<td>113.2</td>
</tr>
<tr>
<td>Pelvis Bend (Fwd-Back)</td>
<td>deg</td>
<td>23.8</td>
<td>21.4</td>
<td>17.2</td>
<td>14.3</td>
<td>10.0</td>
<td>10.4</td>
<td>14.5</td>
</tr>
<tr>
<td>Pelvis Side Bend (Trail-Lead)</td>
<td>deg</td>
<td>0.3</td>
<td>3.7</td>
<td>8.5</td>
<td>11.7</td>
<td>12.0</td>
<td>10.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Thorax Rotation (Open-Closed)</td>
<td>deg</td>
<td>13.3</td>
<td>29.8</td>
<td>100.0</td>
<td>3.5</td>
<td>23.5</td>
<td>55.6</td>
<td>150.6</td>
</tr>
<tr>
<td>Thorax Bend (Fwd-Back)</td>
<td>deg</td>
<td>36.3</td>
<td>35.7</td>
<td>6.6</td>
<td>34.3</td>
<td>24.1</td>
<td>2.5</td>
<td>36.5</td>
</tr>
<tr>
<td>Thorax Side Bend (Trail-Lead)</td>
<td>deg</td>
<td>18.0</td>
<td>13.5</td>
<td>40.8</td>
<td>12.6</td>
<td>27.0</td>
<td>48.2</td>
<td>9.7</td>
</tr>
<tr>
<td>Pelvis Sway (To-Away)</td>
<td>in</td>
<td>0.0</td>
<td>1.6</td>
<td>0.8</td>
<td>2.4</td>
<td>2.5</td>
<td>3.4</td>
<td>8.4</td>
</tr>
<tr>
<td>Pelvis Thrust (Fwd-Back)</td>
<td>in</td>
<td>0.0</td>
<td>0.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.8</td>
<td>3.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Pelvis Lift (Up-Down)</td>
<td>in</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>1.1</td>
<td>1.5</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Thorax Sway (To-Away)</td>
<td>in</td>
<td>0.0</td>
<td>1.4</td>
<td>1.2</td>
<td>0.0</td>
<td>2.0</td>
<td>4.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Thorax Thrust (Fwd-Back)</td>
<td>in</td>
<td>0.0</td>
<td>0.1</td>
<td>2.4</td>
<td>0.5</td>
<td>0.9</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Thorax Lift (Up-Down)</td>
<td>in</td>
<td>0.0</td>
<td>0.8</td>
<td>2.3</td>
<td>1.7</td>
<td>2.2</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Spine Rotation (Open-Closed)</td>
<td>deg</td>
<td>11.2</td>
<td>13.9</td>
<td>47.9</td>
<td>27.9</td>
<td>20.5</td>
<td>5.8</td>
<td>31.5</td>
</tr>
<tr>
<td>Spine (Flex-Ext)</td>
<td>deg</td>
<td>12.5</td>
<td>14.3</td>
<td>23.8</td>
<td>20.0</td>
<td>14.1</td>
<td>7.9</td>
<td>51.0</td>
</tr>
<tr>
<td>Spine Side Bend (Trail-Lead)</td>
<td>deg</td>
<td>16.3</td>
<td>9.8</td>
<td>32.3</td>
<td>1.0</td>
<td>15.0</td>
<td>37.8</td>
<td>2.0</td>
</tr>
<tr>
<td>Head Rotation (Open-Closed)</td>
<td>deg</td>
<td>3.7</td>
<td>13.7</td>
<td>19.5</td>
<td>4.5</td>
<td>3.8</td>
<td>77.4</td>
<td></td>
</tr>
<tr>
<td>Head Bend (Fwd-Back)</td>
<td>deg</td>
<td>46.3</td>
<td>42.3</td>
<td>33.2</td>
<td>49.1</td>
<td>52.0</td>
<td>49.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Head Side Bend (Trail-Lead)</td>
<td>deg</td>
<td>1.0</td>
<td>9.7</td>
<td>10.0</td>
<td>6.9</td>
<td>8.6</td>
<td>11.0</td>
<td>29.7</td>
</tr>
<tr>
<td>Head Sway (To-Away)</td>
<td>in</td>
<td>0.1</td>
<td>2.8</td>
<td>3.7</td>
<td>2.1</td>
<td>3.1</td>
<td>4.6</td>
<td>12.3</td>
</tr>
<tr>
<td>Head Thrust (Fwd-Back)</td>
<td>in</td>
<td>0.0</td>
<td>0.2</td>
<td>0.8</td>
<td>0.2</td>
<td>0.7</td>
<td>0.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Head Lift (Up-Down)</td>
<td>in</td>
<td>0.0</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
<td>0.7</td>
<td>8.2</td>
</tr>
<tr>
<td>Neck Rotation (Open-Closed)</td>
<td>deg</td>
<td>18.1</td>
<td>15.7</td>
<td>80.7</td>
<td>10.8</td>
<td>28.5</td>
<td>56.0</td>
<td>71.3</td>
</tr>
<tr>
<td>Neck (Flex-Ext)</td>
<td>deg</td>
<td>10.0</td>
<td>6.7</td>
<td>39.8</td>
<td>14.7</td>
<td>27.8</td>
<td>47.3</td>
<td>27.8</td>
</tr>
<tr>
<td>Neck Side Bend (Trail-Lead)</td>
<td>deg</td>
<td>17.1</td>
<td>3.8</td>
<td>30.8</td>
<td>5.7</td>
<td>18.5</td>
<td>37.2</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Rng: PGA-Driven Pj: Full Body 12R TPI 7.14-04
Comprehensive Biomechanics Report

Downswing Sequence

Angular Velocity: Pelvis Thorax Arm Club

<table>
<thead>
<tr>
<th>Sequence Parameters</th>
<th>Pelvis</th>
<th>Thorax</th>
<th>Arm</th>
<th>Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Order</td>
<td>order</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Peak Timing Pre-Impact</td>
<td>ms</td>
<td>75</td>
<td>77 to 113</td>
<td>63</td>
</tr>
<tr>
<td>Peak Speed</td>
<td>d/s</td>
<td>357</td>
<td>415 to 522</td>
<td>570</td>
</tr>
<tr>
<td>% of Max</td>
<td>%</td>
<td>15</td>
<td>18 to 23</td>
<td>26</td>
</tr>
<tr>
<td>Acceleration</td>
<td>d/s</td>
<td>1405</td>
<td>1717 to 2585</td>
<td>2496</td>
</tr>
<tr>
<td>Deceleration</td>
<td>d/s</td>
<td>420</td>
<td>1223 to 2734</td>
<td>1279</td>
</tr>
</tbody>
</table>

Segmental Interactions

<table>
<thead>
<tr>
<th></th>
<th>Pelvis-Thorax</th>
<th>Thorax-Arm</th>
<th>Arm-Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Between Peaks</td>
<td>ms</td>
<td>13</td>
<td>5 to 43</td>
</tr>
<tr>
<td>Angular Speed Gain</td>
<td>d/s</td>
<td>203</td>
<td>164 to 272</td>
</tr>
<tr>
<td>Gain Factor</td>
<td>ratio</td>
<td>1.6</td>
<td>1.4 to 1.6</td>
</tr>
</tbody>
</table>

Contribution by Joint

<table>
<thead>
<tr>
<th></th>
<th>Legs</th>
<th>Core</th>
<th>Shoulder</th>
<th>Wrist</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Contribution</td>
<td>%</td>
<td>18 to 23</td>
<td>9 to 12</td>
<td>16</td>
</tr>
</tbody>
</table>
3D Motion Biofeedback

• Real-Time Audio Feedback of Position and Motion Accelerates Learning
• Student Learns to Recognize the Correct Posture and Motion
• Makes Feel Become Real
• Avoids Grooving Incorrect Repetitions
• Automatically Monitors Correctness of Drills, Exercises and Physical Screens
• Helps Implement Effective Block and Random Training where Appropriate
The Kinematic Sequence
Motion Analysis at the Olympic Training Center in Chula Vista
Wireless Inertial Sensors

- Practical and Easy
- Hips, Shoulders, Arm
- AMM Inc. AmmSensors
- Bluetooth Wireless
- Fast – 250 samples/sec
- Small, Light Weight
- Immediate Report
- Simultaneous Video

- Angles Only
Discus, Javelin, Shot, Hammer
Discus, Javelin, Shot, Hammer
Kinematic Sequence - Javelin

- Separation (X-Factor)
- X-Factor Stretch (Stretch Shorten Cycle)
- Finger Snap Demo
- Sequence and Timing

- Max Turning Speed
- Speed Gain
- Average Acceleration
- Average Deceleration
Javelin Workshop

- Three athletes used the sensor
- Enjoyed using it
- Were able to make changes
Example Athlete - Javelin

• Initially had minimal speed gain (red and green peaks almost the same in first graph)
• After working with Coach he was able to gain speed from Pelvis to Thorax (Red to Green)
• We did not measure the throw distance

Angular Velocities (deg/sec)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Pelvis Angular Velocity</td>
<td>738</td>
</tr>
<tr>
<td>Peak Thorax Angular Velocity</td>
<td>741</td>
</tr>
<tr>
<td>Angular Speed Gain</td>
<td>4</td>
</tr>
</tbody>
</table>

Angular Velocities (deg/sec)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Pelvis Angular Velocity</td>
<td>699</td>
</tr>
<tr>
<td>Peak Thorax Angular Velocity</td>
<td>870</td>
</tr>
<tr>
<td>Angular Speed Gain</td>
<td>171</td>
</tr>
</tbody>
</table>
Kinematic Sequence - Discus
Full Body Capture with Electromagnetic System

Field Hockey and Rugby
Drag-Flick
3D Motion – Scrum-Half Pass
Women’s Rugby 3D

• Scrum-Half Pass

• Interested variables include:
 – Foot placement
 – Body position before, during, and after pass
 – Rotation/rotational speeds
 – Resultant velocities of pelvis, thorax, and hands
 – Arm/wrist action
 – Timing
System of the Future

• Inside
 – Probably a combination of
 • Camera based, markerless tracker
 • Inertial Sensors

• Outside
 – Comfortable wearable suite with combination of sensors
 • Inertial, local GPS
End

Thank You