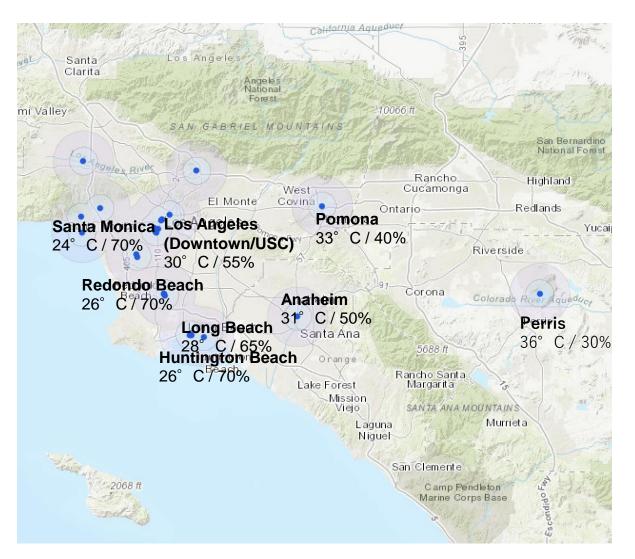

Heat adaptation strategy

Global Warming: A Growing Challenge in Sports

Global Mean Temperature Difference (°C) Compared to 1850-1900 average

Source: WMO (2024)

2023 was the warmest year in the 174year observational record.



(Beat the heat during Paris 2024)

Heat stress is a critical issue in international sports competitions, including the Olympic Games.

Environment at LA 2028 venue

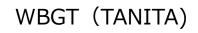
	Olympic Games (14–30 July)		Paralympic Games (22 Aug–3 Sep)	
	Coastal station	Inland station	Coastal station	Inland station
Temperature data (2019–2023)				
Daily average (°C)	20.0 ± 1.4	27.3 ± 2.5	21.5 ± 1.9	27.5 ± 3.3
	(17.1-23.8)	(19.9-32.2)	(18.1-26.4)	(19.6-36.1)
Daily maximum (°C)	23.3 ± 1.8	32.0 ± 2.6	25.1 ± 2.8	32.1 ± 3.5
	(20.0-28.9)	(26.1-37.8)	(20.6-32.8)	(22.8-40.0)
Days $> 30 ^{\circ}\text{C} (\%)$	0	82	8	71
Days $> 35 ^{\circ}\text{C} (\%)$	0	16	0	23
Relative humidity data (2019–2023)				
Daily average (%)	79.1 ± 4.2	49.3 ± 8.0	76.0 ± 6.0	50.3 ± 10.5
	(64.9 - 86.6)	(29.7-64.8)	(30.2-88.1)	(26.9-83.1)
Daily maximum (%)	90.7 ± 4.4	76.6 ± 6.6	88.8 ± 5.5	77.5 ± 10.6
	(79.0-100)	(57.0-88.0)	(76.0–100)	(48.0–100)

NB. Data are mean \pm standard deviation (minimum-maximum) of available daily data from the same dates as for the 2028 Los Angeles Games.

(Bongers et al. 2025)

Inland venues tend to be hotter than coastal venues.

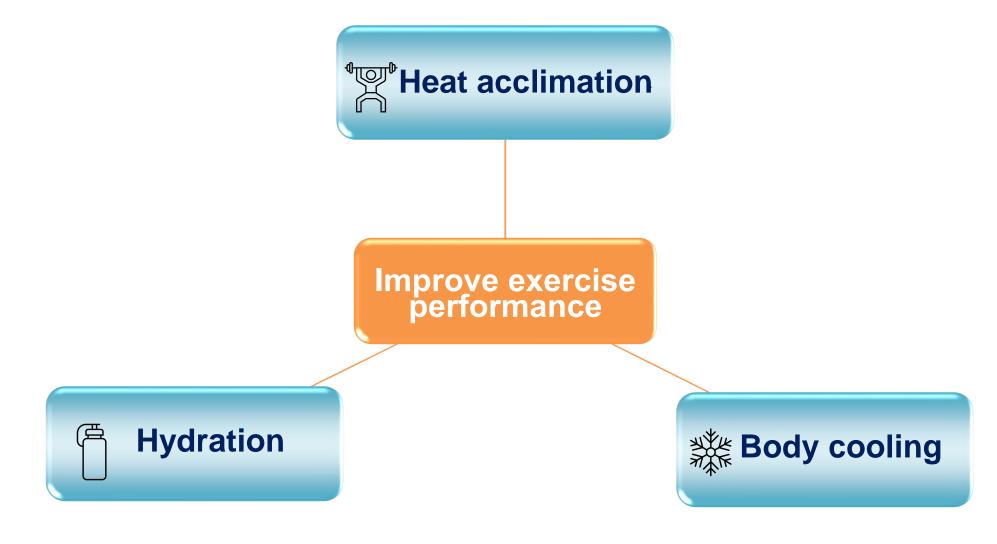
Provisional values based on climate normals patterns; replace with exact NOAA/NCEI 1991-2020 station normals if needed.


Heat Illness Prevention Guidelines for Sports (WBGT – Japan)

WBGT; considers temperature, humidity, radiation heat

*37°C 25% = 28°C 75%

WBGT $\geq 25^{\circ}$ C \rightarrow caution for body temperature rise Implementation of heat countermeasures is recommended



WBGT (°C)	Wet-bulb (°C)	Dry-bulb (°C)	Guidance for Sports
≥ 31	≥ 27	≥ 35	Cancel (Danger)
28–30.9	≈ 24	≈ 31	Severe Warning
25–27.9	≈ 21	≈ 28	Warning
21–24.9	≈ 18	≈ 24	Caution
≤ 20	≤ 17	≤ 23	Generally Safe

Heat Stress Management for Athletes

We have conducted research and provided support for the Summer Olympics based on these methods.

Environmental Differences by Olympic Host City

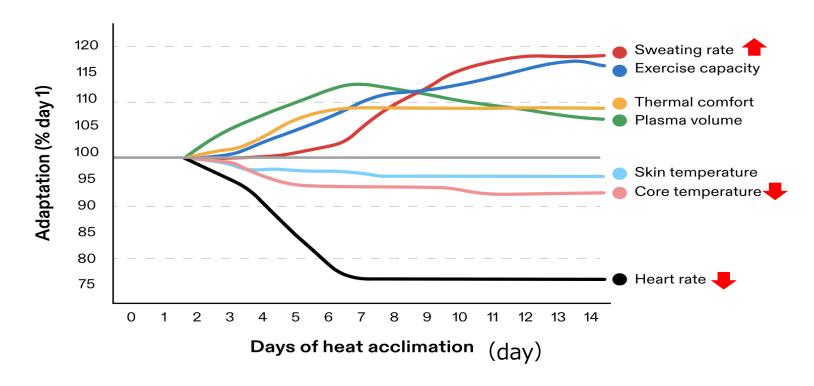
Tokyo 2020

- High temperature and humidity
- Evaporative heat loss via sweating is limited
- Beyond heat acclimation, active cooling to lower core temperature is important

Paris 2024

- High temperature and low humidity
- Evaporative heat loss via sweating is more feasible.
- Heat acclimation to promote sweating is important
- Heat waves can sometimes exceed 40 °C

Los Angels 2028



- LA tends to be hot with lower humidity—so heat acclimation training is important.
- Hydration is essential in any climate.
- Consider body-cooling strategies when WBGT ≥ 25 (°C).

Heat Acclimation

Competitive athletes adapt faster than the general population.

Heat acclimation is the *only* heat management that can be prepared *in advance*.

Short term vs Medium-term heat acclimation

Short-term heat acclimation: **STHA ≦**7days

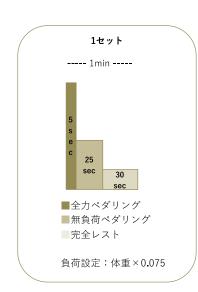
Medium-term heat acclimation: **MTHA** 8-14 days

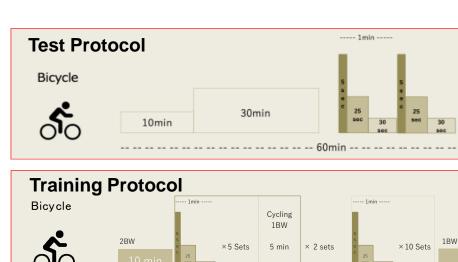
	STHA	MTHA
Time to exhaustion	11 ± 8%↑medium(0.5)	31 ± 29%↑large(1.0)
Athletic performance	2.4 ± 3.5%↑small(0.3)	10.2 ± 14.0%↑medium(0.6)
Heart rate	-3.5 ± 1.8 %↓large(-1.0)	-7.0 ± 1.9%↓large(-1.0)
Core temperature	-0.7 ± 0.7 %↓large(-0.9)	-0.8 ± 0.3%↓large(-1.1)
Plasma volume	3.5 ± 2.6%↑	7.1 ± 3.7%↑

(Guy et al. 2015)

Both approaches improve exercise performance, but MTHA shows a larger effect size. STHA is particularly practical for elite athletes with tight schedules

Heat Acclimation Training for the Tokyo 2020 Games (3X3)

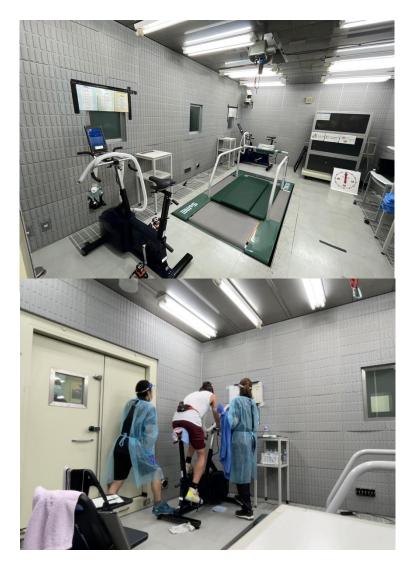


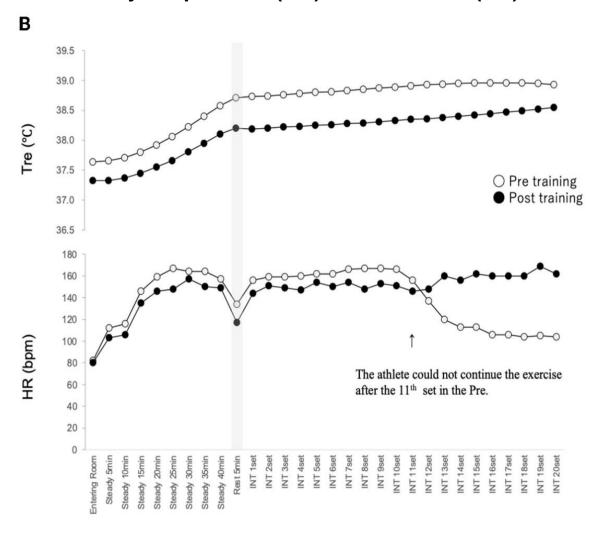

https://www.olympics.com/en/news/what-we-learned-3x3-basketball-tokyo-2020-olympics

Heat acclimation training using high intensity intermittent exercise for 7 days

Subjects: 8 male, 6 female athletes

- Official event from the Tokyo 2020 Games
- Most of Japan's 3x3 players also play five-man/woman basketball
- They usually trained indoors and were not accustomed to a hot environment
- Matches were held from 10:00 to 16:00, the hottest time of the day
- Heat acclimation and other heat-related measures were an issue





Heat Acclimation Training for the Tokyo 2020 Games (3X3)

Environment: Ta 33°C, Rh70%

Typical example data of core body temperature (Tre) and heart rate (HR)

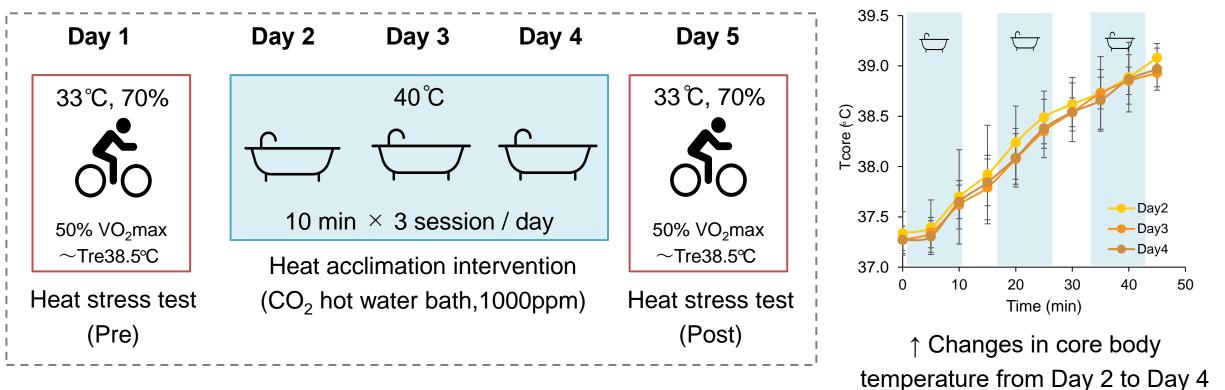


Passive heat acclimation

Why this works

- Can be implemented without changing regular training.
- ✓ Especially useful for skill- or team-based sports: enables heat acclimation without adding fatigue.

30 min, intermittent


Key point: In both methods, aim to raise core temperature to ~38.5 °C.

Passive Heat Acclimation Using CO₂ Baths

- Japanese people have a long tradition of bathing, and Japanese athletes are also familiar with it.
- Japanese athletes use CO₂ water baths at support sites more frequently than tap water baths (Shimizu et al., 2021).
- CO₂ hot water bath imposes greater thermal stress than tap hot water bathing (Iwata et al 2025).

We examined whether very short, 3-day CO₂ bathing could induce heat acclimation.

CO2 water bathing in Paris

We presented our research data at the **Olympic Support** House at Paris.

Timing of body cooling

Pre-cooling

Typical sports: Marathon, cycling, triathlon

Common cooling methods: Ice slurry; palm cooling; ice vest etc..

Per-cooling/Mid-cooling

Typical sports: Tennis, baseball etc...

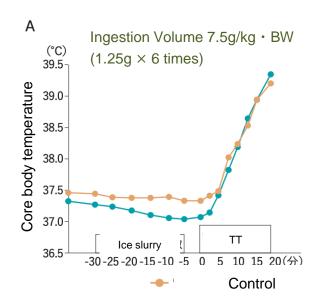
Typical sports: Football, Rugby, Hockey, etc...

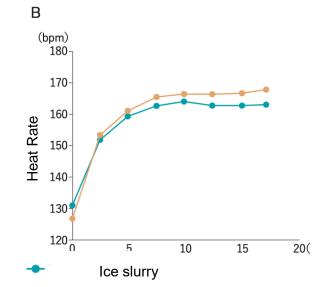
Common cooling methods: Ice slurry; ice vest; mist + fans etc...

Post-cooling

W-up Regardless of whether pre- or mid-cooling was used

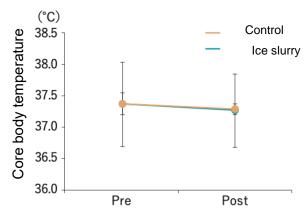
Common cooling methods: <u>lce bath; ice vest; mist + fans; cryotherapy</u> etc...

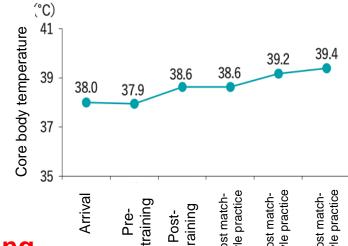



Cycling

Doshimichi Mountain Section

Beach Volleyball




WBGT, 27 °C Ta, 31 °C Rh, 60 %

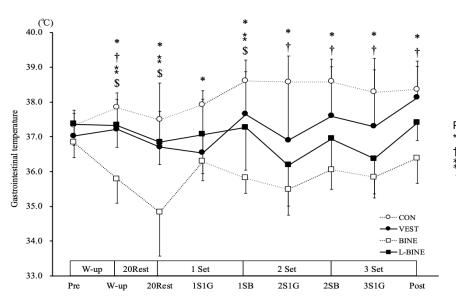
Kawasaki Marien

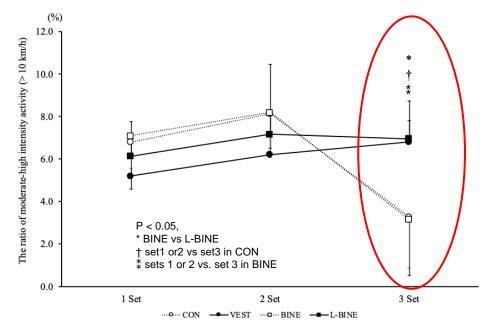
Ingestion Volume 7.5g/kg • BW

Requires combination with external cooling

Body Cooling Support in Tennis at the Tokyo 2020 Games

Pre W-up Game Game Game Game Game Game Game Post


Tennis


WBGT, 30.9 °C Ta, 33.6 °C Rh, 49.0 %

Intervention	Warm-up (30min)	Rest (20min)	Game break (90sec)	Set break (120sec)
CON	ad libitum fluid ingestion			
BINE	Ice slurry 200g	Ice slurry 200g Ice vest	Ice slurry 100g Ice vest	Ice slurry 100g Ice vest
L-BINE	Ice slurry 100g	Ice slurry 100g Ice vest	ad libitum Ice vest	Ice slurry 100g Ice vest
VEST	ad libitum fluid ingestion	ad libitum Ice vest	ad libitum Ice vest	ad libitum Ice vest

P < 0.05
*CON vs. BINE
†CON vs. L-BINE
*VEST vs. BINE
§ BINE vs. L-BINE

Heat Countermeasure Plan for Los Angeles

Pre-event prep in your country

Pre-event prep in Los Angeles

Game day

Heat Acclimation Training

Enhance sweating capacity
Increase plasma volume

Decide on and prepare cooling methods

Re-acclimation Training (on site)

Time-zone adjustment; confirm local climate conditions

In addition to regular training, reacclimate on site using heat stimuli (e.g., hot-water bathing, extra layers).

Decide use based on game-day WBGT.

Body Cooling

Hydration

Ingest the required fluid volume according to body-mass change and urine color.

Estimate sweat loss.

Reconfirm sweat loss under Los Angeles conditions.

